

New highly selective 5-HT_{2B} receptor antagonist for the treatment of fibrosis

L. Pettersson, C. Wenglén, H. Arozenius, G. Ekström AnaMar AB, Lund, Sweden

INTRODUCTION

Serotonin (5-HT) is known to be associated with fibrosis and recent studies support that 5-HT_{2B} receptors have an important role in fibrotic disease by regulating production of profibrotic mediators and modifying cell differentiation and activation.

Most 5-HT_{2B} receptor antagonists developed so far are associated with certain liabilities, such as poor selectivity and inadequate pharmacokinetic properties.

Starting from the clinical compounds Guanabenz and AMAP102, which are weak 5-HT_{2B} receptor antagonists, we have developed new, highly potent and selective antagonists. The lead compound AM1125 (K_i 0.87 nM, Mw 218), prepared in two synthetic steps followed by chiral separation, has been shown effective in *in vivo* models of fibrosis.

Here we report on the preparation and the very robust SAR of the 5-HT_{2B} receptor binding for this compound class.

Lead Finding Strategy

Strip off substituents - Constrain structure by ring-closure - Redecorate with X, R, and A.

Lead Compound AM1125

a: HNMe₂·HCl / 1,3-dioxolan, cat. HCl (conc.), 90°C, 4h (77%). b: H₂NNHC(NH)NH₂·HCl / EtOH, reflux, 2 h (30%). c: Chiral separation by SFC (36%).

The racemate of AM1125 was identified among the first 15 compounds prepared as a low nM 5-HT_{2B} receptor ligand. Separation of the enantiomers and X-ray crystallography followed by *in vitro* characterization demonstrated that the R-enantiomer AM1125 was a selective 5-HT_{2B} receptor pure antagonist.

Mw 218
LogD -1.1
Aq. sol. >10 mg/mL
CLint (h hepatocytes) 3.2
(uL/min/million cells)

PREPARATIVE CHEMISTRY of 1-Amidino-3-Aryl-2-Pyrazolines¹

The 1-amidino-3-aryl-2-pyrazolines have been described since the 1950s and can be prepared by conventional methods. The order of assembling the different structural moieties can be varied.

General Building Blocks

- Mannich base formation from an alkyl-arylketone.
- Amino-guanidine formation from hydrazine and an S-methylated thiourea.
- Pyrazoline formation from the Mannich base and amino-guanidine.
- Alternatively, the Mannich base can first be reacted with hydrazine.
- (Thio)Semicarbazides can also be used to form the pyrazoline ring.

Synthetic Route for Key Compounds.

4,4-Dialkyl- and 5-Alkyl Derivatives

- β-Substituted Michael acceptors are suitable for the preparation of 5-substituted pyrazoline derivatives.
- 4,4-Dimethyl derivatives can be prepared from 1,1-dimethyl-2-chloro-ethylketones. Hydrazine was used for the pyrazoline ring formation.

STRUCTURE-ACTIVITY RELATIONSHIPS (SAR) of 5-HT_{2B} Receptor Binding²

f: H₂NNHC(NH)NHA, NaOH (aq.), EtOH. g: BBr_{3.} CH₂Cl₂. h: MeI, MeOH. i: A-NH_{2.} MeOH.

5-HT_{2B} Receptor Binding²

Data is presented as % displacement of radioligand at indicated compound concentrations (representative examples).

	Test conc. (nM)				Aryl	Pyrazoline	Guanidine
	1	10	100	1000	Alyi	1 yrazonne	Gaarnanic
				38	-	-	-
Aromatic				90	2'-OH	-	-
				76	2'-OMe	-	-
				95	2'-CI	-	-
			81	99	2',3'-(CH) ₄ -	-	-
				6	3',4'-di-(OMe) ₂	-	-
			23	52	2'-OH, 6'-CI	-	-
				13	4'-OMe	-	-
			29	77	4'-SMe	4-Me	-
			3	-12	4'-SO ₂ Me	4-Me	-
Pyrazoline				68	-	4-Me	-
		54	91	100	2'-OH	4-Me	-
	45	83	95	99	2'-OH	(4R)-Me	-
		-1	35	72	2'-OH	(4S)-Me	-
			28	79	2'-OH	4,4-di-Me ₂	-
			10	63	2'-OH	5-Ph	-
Guanidine	1	42	92	99	2'-OH	4-Me	-C(NH)NH-Me
	79	91	94		2'-OH, 3'-CI	4-Me	-C(NH)NH-Bu
	49	97	98	99	2'-OH	4-Me	-C(NH)NH-Bn
	91	101	103		2'-OH, 3'-CI	(4R)-Me	-C(NH)NH-Bn
	88	100	97		2'-OH	4-Me	-C(NH)NH-Ph
	12	4	27		2'-OH, 3'-CI	4-Me	$-C(NH)N(Me)_2$
			-3	30	2'-OH	-	-C(NMe)NH-Me
	-15	27	74		2'-OH, 3'-CI	4-Me	-C(NH)NH-CN
	48	97	104		2'-OH, 3'-CI	4-Me	-C(NH)NH-thiophen-3-yl
	55	93	99		2'-OH, 3'-CI	4-Me	-C(NH)NH-pyrazin-2-yl
			21	68	2'-OH	4-Me	-C(S)NH ₂
		27	70	93	2'-OH, 3'-CI	4-Me	-C(O)NH ₂
	32	81	97		2'-OH, 3'-CI	4-Me	-C(O)NH-Bn

- Optimized binding (K_i 0.1-1 nM) is obtained with aromatic 2'- (or 2', 3'-) subst., (4R)-Me, and lipophilic mono-N-subst.
- (4R)-Enantiomers show considerably higher binding (x100-200) than the corresponding (4S)-enantiomers.
- A basic guanidine moiety is not a requisite for binding.

- 1. See PCT application WO2016/207231A1 for a detailed description of the preparative chemistry and 5-HT_{2B} receptor binding data.
- 2. 5-HT_{2B} receptor (human) binding was performed at Eurofins Panlabs Taiwan, Ltd., in a ligand displacement assay using ³H-LSD as radioligand (assay no. 271700).